BackForwardInstrument:  GNSS-RO (Sentinel-6) 

Instrument details
Acronym GNSS-RO (Sentinel-6)
Full name Global Navigation Satellite System - Radio Occultation
Purpose Temperature/humidity sounding with highest vertical resolution, space weather
Short description

Measuring the phase delay due to refraction during occultation between GPS/Galileo and LEO

Background

Following the development for COSMIC-2

Scanning Technique

Limb scanning from 1300 km to close-to-surface by time sampling - Azimuth: 90° sectors fore- and aft-

Resolution About 300 km horizontal, 0.5 km vertical
Coverage / Cycle 3 GNSS constellations tracked. About 1000 soundings/day - Average spacing 710 km - Global coverage (300 km spacing) in 2 weeks.
Mass 6 kg Power 50 W Data Rate 40 kbps

 

Providing Agency NOAA
Instrument Maturity Flown on operational programme
Utilization Period: 2021 to 2036
Last update: 2024-03-04
Detailed characteristics
Satellites this instrument is flying on

Note: a red tag indicates satellites no longer operational, a green tag indicates operational satellites, a blue tag indicates future satellites

Instrument classification
  • Earth observation instrument
  • Active and radio-occultation sensor
  • GNSS radio-occultation
WIGOS Subcomponents
  • Subcomponent 1
  • GNSS radio occultation (basic constellation)
  • GNSS radio occultation sounder (basic constellation)
  • Subcomponent 2
  • Magnetospheric energetic particles and magnetometers
  • Ionospheric total electron content sensor [at LEO and cross magnetosphere]
  • Ionospheric electron density sensor [in LEO and cross magnetosphere]
Mission objectives
Primary mission objectives
  • Atmospheric temperature
  • Height of the top of PBL
  • Height of the tropopause
  • Ionospheric Total Electron Content (TEC)
  • Specific humidity
  • Temperature of the tropopause
Evaluation of Measurements

The following list indicates which measurements can typically be retrieved from this category of instrument. To see a full Gap Analysis by Variable, click on the respective variable.

Note: table can be sorted by clicking on the column headers
Note: * Primary mission objective.
VariableRelevance for measuring this variableOperational limitationsExplanation
Atmospheric temperature*2 - very highInaccurate in low troposphere.Two directional antennas, three GNSS system tracked, covering about 1500 soundings/day
Geoid4 - fairHighly indirect.Radio-occultation processing implies precise orbitography. Geoid derived from multi-temporal analysis
Gravity field5 - marginalHighly indirect.Radio-occultation processing implies precise orbitography. Gravity field derived from multi-temporal analysis
Height of the top of PBL*2 - very highNo specific limitation.Two directional antennas, three GNSS system tracked, about 1500 soundings/day. PBL top measured as discontinuity of the refraction index
Height of the tropopause*2 - very highNo specific limitation.Two directional antennas, three GNSS system tracked, about 1500 soundings/day. Tropopause height measured as discontinuity of the refraction index
Specific humidity*3 - highInaccurate in high troposphere.Two directional antennas, three GNSS system tracked, about 1500 soundings/day
Temperature of the tropopause*2 - very highNo specific limitation.Two directional antennas, three GNSS system tracked, about 1500 soundings/day
Atmospheric density1 - primaryNo specific limitation.Measuring atmospheric density
Electron Density1 - primaryNo specific limitation.Two directional antennas, three GNSS system tracked, about 1500 soundings/day
Ionospheric Total Electron Content (TEC)*3 - highNo specific limitation.Two directional antennas, three GNSS system tracked, about 1500 soundings/day
Ionospheric Scintillation4 - fairNo specific limitation.Instrument type = GNSS radio-occultation sounder AND No. of tracked GNSS constellations >= 3 AND It has two directional antennas, looking fore- and aft- = TRUE AND It has ionospheric viewing capability = TRUE